Question	Answer	Marks
1(a)	zinc blende is burnt/roasted/heated in air; zinc sulfide + oxygen \rightarrow zinc oxide + sulfur dioxide;	2
(b)	zinc oxide + carbon \rightarrow zinc + carbon dioxide/monoxide;	1
(c)	z sulfate; pure zinc; $Zn^{2+} + 2e \rightarrow Zn;$ $Zn \rightarrow Zn^{2+} + 2e ;$ zinc <u>ions</u> are removed (from solution) and replaced (into solution); at the same rate/speed;	6
(d)(i)	С	1
(d)(ii)	 any two from: hard(er)/less malleable; strong(er); (better) appearance; (more) resistant to corrosion; 	2
(e)(i)	steel (or iron) is exposed to oxygen and water;	1
(e)(ii)	Zn more reactive than Fe (allow steel); Zn loses/transfers electrons (more readily) and forms (+ve) ions (in preference to Fe); Fe (allow steel) is more reactive than Cu; Fe loses/transfers electrons (more readily) and forms (+ve) ions (in preference to Cu);	4

Question	Answer	Marks
2(a)(i)	vibrate (about fixed position)/vibration;	1
(a)(ii)	electrostatic force of) attraction; (between) positive ions and negative ions/oppositely charged ions/unlike charged ions/cations and anions;	1 1
(a)(iii)	regular/repeated/pattern/framework/ordered/alternating/organised (arrangement of); positive and negative ions/oppositely charged ions/cations and anions/unlike charged ions;	1 1
(b)(i)	correct direction (going towards negative electrode);	1
(b)(ii)	$Li^{+} + e \rightarrow Li/Li^{+} \rightarrow Li - e;$	1
(b)(iii)	$2Br \rightarrow Br_2 + 2e / 2Br - 2e \rightarrow Br_2$ formulae; balancing;	2
(b)(iv)	Br /bromide (ion); electron lost/donated electrons/increased oxidation state/increased oxidation number/oxidation numbers changed from –1 to 0/increased valency;	1

Question	Answer	Marks
2(c)	$ \begin{array}{l} \textbf{M1} (gas) \ hydrogen \ (given \ off \ at \ cathode)/H_2; \\ \textbf{M2} \ hydroxide \ \underline{ions}/lithium \ hydroxide/OH \ /LiOH \ are \ alkali(ne); \\ \textbf{M3} \ 2LiBr \ + \ 2H_2O \ \rightarrow \ 2LiOH \ + \ H_2 \ + \ Br_2; \\ \textbf{or} \\ 2H^+ \ + \ 2e \ \rightarrow \ H_2/2H^+ \ \rightarrow \ H_2 \ - \ 2e \ ; \\ \textbf{or} \\ 2Br \ \rightarrow \ Br_2 \ + \ 2e \ /2Br \ - \ 2e \ \rightarrow \ Br_2; \\ \textbf{or} \\ 2H^+ \ + \ 2Br \ \rightarrow \ H_2 \ + \ Br_2; \\ \end{array} $	3

3	(a	(i)	insufficient/limited oxygen or 2C + $O_2 \rightarrow 2CO$	[1]
			coke/carbon reacts with carbon dioxide or C + $CO_2 \rightarrow 2CO$	[1]
		(ii)	Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO ₂ species (1) balancing (1)	[2]
	(b)		carbon dioxide	[1]
		(ii)	$CaO + SiO_2 \rightarrow CaSiO_3$ [1] each side corr	[2]
		(iii)	(molten) iron higher density (than slag)	[2]
		(iv)	No oxygen in contact with iron or layer of slag prevents hot iron reacting with oxygen/air or (all) oxygen reacts with carbon (so no oxygen left to react with iron)	[1]
	(c)		air/oxygen and water (need both)	[1]
		(ii)	aluminium oxide layer is impervious or non-porous or passive or unreactive or will not allow water/air to pass through it (rust allows passage of water or air or it flakes off)	[1]
	(d)		zinc more reactive (than iron/steel) loses electrons electrons move (from zinc) to iron Zinc reacts (with air and water) or zinc corrodes or zinc is oxidised or zinc is anodic or zinc forms positive ions or zinc forms Zn ²⁺ or iron and steel don't react with air/water or iron and steel are not oxidised or iron and steel do not form ions or iron and steel do not lose electrons or iron and steel are cathodic	[1] [1] [1]
		(ii)	R to L in wire	[1]
		(iii)	$2H^+ + 2e \rightarrow H_2$ species (1) balancing (1)	

[Total: 19]

4	(a (i)	rate decreases <u>concentration</u> of sodium chlorate ((I))/reactant decreases	[1] [1]
	(ii)	(initial) gradient greater/steeper (must start at origin) same final volume of oxygen	[1] [1]
	(iii)	(to prevent)photochemical reaction/(to prevent)reaction catalysed by light/light breaks down or decomposes sodium chlorate((I))	[
	(iv)	particles have more energy/particles move faster/ more collisions collisions more frequent or more often/greater chance of collision/collision	[1] [1]
		rate increases/more particles have energy to react/more collisions are successful or effective	[1]
	(b)	2Cl \rightarrow Cl ₂ + 2e() / 2Cl - 2e() \rightarrow Cl ₂	[1]
		$2H^{*}$ + 2e() \rightarrow H_{2} / $2H^{*}$ \rightarrow H_{2} – 2e()	[1]
		hydrogen formed at cathode/- and chlorine at anode/+	[1]
		<u>Na[⁺] and OH</u> or sodium <u>ions</u> and hydroxide <u>ions</u> left in solution/form/become sodium hydroxide	[1]
	(ii)	Cl_2 + 2NaOH \rightarrow NaClO/NaOCl + NaCl + H ₂ O Species (1) Balancing (1)	[2]
			[Total: 14]